a2 United States Patent

Hechtman et al.

US009477599B2

10) Patent No.: US 9,477,599 B2

(54) WRITE COMBINING CACHE
MICROARCHITECTURE FOR
SYNCHRONIZATION EVENTS

(71) Applicant: Advanced Micro Devices, Inc.,
Sunnyvale, CA (US)

(72) Inventors: Blake A. Hechtman, Durham, NC
(US); Bradford M. Beckmann,
Redmond, WA (US)

(73) Assignee: Advanced Micro Devices, Inc.,
Sunnyvale, CA (US)

*) Notice: Subject to any disclaimer, the term of this
] y
patent is extended or adjusted under 35
U.S.C. 154(b) by 371 days.

(21) Appl. No.: 13/961,561
(22) Filed: Aug. 7, 2013

(65) Prior Publication Data
US 2015/0046652 Al Feb. 12, 2015

(51) Int. CL
GOGF 12/00 (2006.01)
GOGF 13/00 (2006.01)
GOGF 13/28 (2006.01)
GOGF 12/08 (2016.01)
GOGF 12/12 (2016.01)
(52) US.CL

CPC ... GO6F 12/0815 (2013.01); GO6F 12/0811

45) Date of Patent: Oct. 25,2016
(58) Field of Classification Search
CPC ... GOG6F 12/0815; GO6F 12/0811; GOG6F
12/128; GOG6F 12/12; YO02B 60/1225
USPC ... 711/122, 151, 147, 117, 130, 141, 119,
711/118
See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

2012/0117323 Al1* 5/2012 Cypher GO6F 12/0855
711/118
2013/0262777 Al* 10/2013 Ghaicccceeve. GO6F 12/126
711/136

* cited by examiner

Primary Examiner — Yong Choe
Assistant Examiner — Shane Woolwine
(74) Attorney, Agent, or Firm — Volpe and Koenig, P.C.

(57) ABSTRACT

A method, computer program product, and system is
described that enforces a release consistency with special
accesses sequentially consistent (RCsc) memory model and
executes release synchronization instructions such as a StRel
event without tracking an outstanding store event through a
memory hierarchy, while efficiently using bandwidth
resources. What is also described is the decoupling of a store
event from an ordering of the store event with respect to a
RCsc memory model. The description also includes a set of
hierarchical read/write combining buffers that coalesce
stores from different parts of the system. In addition, a pool
component maintains partial order of received store events
and release synchronization events to avoid content address-
able memory (CAM) structures, full cache flushes, as well as
direct write-throughs to memory. The approach improves the
performance of both global and local synchronization events
since a store event may not need to reach main memory to

(2013.01); GOGF 12/128 (2013.01); Yo2B ~ complete.

60/1225 (2013.01) 20 Claims, 8 Drawing Sheets
___ 300
; .
i 360 i
| I
i L(;/ ~—340 i
i Pool L2 !
i :
| |
! i
i 330 |

I
| o
! i
i 350a 3500 i
L ol !
! L1 L [—320a L1 Ly 320 |
I | Pool Pool i
i :
| I
| I
\ |
| I
| I
\ |
! i
! |

U.S. Patent Oct. 25, 2016 Sheet 1 of 8 US 9,477,599 B2

100

BUS 140
(_J

8
D)
o
O
o
O
& -
(b}
> Q)
i= T
= o
D)
al
&)

US 9,477,599 B2

Sheet 2 of 8

Oct. 25, 2016

U.S. Patent

00¢

||||||| ¢ 9Old
m ||
_ |
_ oz~ NO |
_ BOLZ—~] no i
_ m
_ |
_ |
_ _
| q0zz—~/| a |
| e0ZZ —~~/ 11 _
_ m
_ |
_ |
_ _
_ L _
| ogzsng |
_ _
_ |
_ |
_ |
_ |
_ |
m oz~ ¢l m
" _
_ |
_ |
_ |
|||||||||||||||| |
|||||||||||||||||| |
]
orl Sng

US 9,477,599 B2

Sheet 3 of 8

Oct. 25, 2016

U.S. Patent

00€

€ Old
o~ MO eole~ M9

|00d |00d

q0ze ~/ b L] e0ze ~/ 11 17

0S¢ BOGE
0sE

|00d

ove—~ ¢l -

09¢

US 9,477,599 B2

Sheet 4 of 8

Oct. 25, 2016

U.S. Patent

¥ 'Old

+

AlJuS 2J01S B Ul pI peatyl
pue ssalppe 1asu|

po) Y
09v

9UOED |7 O} BJep Al

iPyise
UOIBZIUOIYDUAS
ases|al s|

—J
141844

Al)us 810)s B Ul pI pealy)
pue ssaJppe Jssu|

Aowaw
ulew 1e pa1e|dwod peoT

sa)lum Jold Aue Jaye aqg o) pl
peaJy] YIM JayJell asesal ppy

—J
14147

UOIIBZIUOIYOUAS
ases|oy

J
0¥y
UONBZIUOIYOUAS
BYoeD | 0] B1Ep SILAA |« ases|al Io
9I01S ‘peo| ‘8l01g
J
141397

8Uoed WO} peay

—J
0cvy

A

US 9,477,599 B2

Sheet 5 of 8

Oct. 25, 2016

U.S. Patent

g "Old

Gog

pug

919|dwo9 sI ases|o
1ey) peaJy) buneuiblo o)
wswsbpamouyoe puss

Joyiew fomm
asesjey

Zioxiew
ases|al Jo Anue
2.0]S J0IAT
194
A

Glg

00¢ 015

ased|al Jo Ajud

JoyJew
asea|ay

$8yoeo

ul eleq

Sloylew

2J0)S 101A]

0] J3¥JelW asea|al 10IAg

|00d ¢

3
Ggcs

v

Gyg dayls o)

Buneuiblo 0] ases|adl Jo uona|dwod

SSalppe 8y} YIm pajeloosse
Alus ayoed |1 a1epljeAU|

pesJy}

[eubis ‘[PYIS B 10 uoinod

¢8Yoeod 17
ul ejeq

9J0]S B WOJL SBM BIEP 8Yl USUAA SHS
doils o]
Alowaw
ulew 01 8yaed g7 Ul elep 10IAg
)
09¢

ayoed Z7
0} 8Yyoed |7 Ul ejep
Buipuodss.iod 191A]

|00d 21
01 Aus 31018 19IA]

ps.
0yS

|ocd
Z1 01 A)us 2401s 191Ag

)
geg
4]

v

dais o]

US 9,477,599 B2

Sheet 6 of 8

Oct. 25, 2016

U.S. Patent

9 "Old
qoLe B0LE
i I

no no no no
4 v v vty v by ®y
_ L X
¢V ¢V 2

d 100 H 100d 1004 :ﬂ %hood
£

no

v ooy

19Y

I X—t X

09
4 100d

X 4 \5 x

11

W3N

o)
L X
EL

W3

009

(2) v 18d LS 909 ‘S09 ‘+09 ‘209
(1) X LS €09 109

(1)X a1 809
(Z)vboy a1 109
®
qoLE ND

B0LE NO

o<l

US 9,477,599 B2

Sheet 7 of 8

Oct. 25, 2016

U.S. Patent

L 'Old

174

pu3l

919|dwoo si aseg|al
1ey1 pea.y) bujeuiblio o)
JusWwIdBbpamouoe puss

JoyIeW fom ,
ases|oy

cAue Jaxiew
ose9|al J0 21018

A

004 0LZ

SS2IPpPE 8y} UM pa]eIoosse
Aius ayoed | a1epleau]

peaJy; Buneublio
0} asea|al Jo uonadwos jeubis

ilovlew
ases|al Jo 81018

Joyew
ases|oy

O4did ¢1
0} JoyJew 9ses|al 191A]

~ v
Gel
G/ de)s o

£94Yoed ‘9415 B Jo 1ed s 8101s syl UsUpy | Sp2 deis o)
Z1ureleg A
Aowsw
UIBW 0] ®YIBD Z7 Ul BlEP 13IAT]
3
094
ayoro

21 01 Aljue ayoed
£9Yded L7 L7 Ul elep 101Ag

ul eleqg

o414
21 01 Aus 101A3

3
0)7

0414 21 03 Anus 10Ing

-~ v
Ge/
G/ da)s o

U.S. Patent

Oct. 25, 2016

Communication
Infrastructure
806

1L 10 1L

Sheet 8 of 8

US 9,477,599 B2

800
Processor 804
Main Memory 808
Display Interface | Display Unit
802 830
Secondary Memory 810
Hard Disk
812
Removable Removable
Storage Drive |—1+-———- Storage Unit
814 818
Removable
Intgrzf(a)ce —————— Storage Unit
822

828
Communications |_ S _
Interface T
827

FIG. 8

K

Communications Path 826

US 9,477,599 B2

1
WRITE COMBINING CACHE
MICROARCHITECTURE FOR
SYNCHRONIZATION EVENTS

BACKGROUND

1. Field

The embodiments are generally directed to managing
memory, and more specifically to managing memory among
heterogeneous computer components.

2. Background Art

A computing device generally includes one or more
processing units (e.g., a central processing unit (CPU), a
graphics processing unit (GPU), a general purpose GPU
(GPGPU), an accelerated processing unit (APU), or the
like), that access a shared main memory. The processing
units may execute programs (e.g., instructions or threads)
that result in accesses to main memory. Because memory
accesses may traverse a memory hierarchy including levels
of cache and main memory, memory accesses may have
different latencies, and may be performed in a different order
than what was intended by the programs. In addition there
may be conflicts, e.g., when two memory accesses attempt
to store data in the same memory location.

Memory accesses are also called memory events, and
examples include a store event (i.e., a memory access
request to write data to main memory), a load event (i.e., a
memory access request to read data from main memory),
and synchronization events that are used to order conflicting
memory events.

Memory consistency models provide rules for ordering
memory events. A type of memory consistency model,
release consistency with special accesses sequentially con-
sistent (RCsc), provides a framework for event ordering for
parallel programs with synchronization. Current systems
that implement an RCsc memory model, a write-through
(WT) memory system and a write-combining (WC) memory
system, have difficulty with synchronization events such as
a store release (StRel) synchronization event.

A StRel synchronization event is a release synchronizing
store instruction that acts like an upward memory fence such
that prior memory operations are visible to threads that share
access to the ordering point before the store event portion of
the StRel completes. A load acquire (LdAcq) synchroniza-
tion event is a synchronizing load instruction that acts as
downward memory fence such that later operations cannot
occur before this operation.

Upon executing a StRel synchronization event in a WT
memory system, data is immediately written-through to
main memory which is an inefficient use of the precious
bandwidth resources to main memory. In addition, the
system tracks acknowledgements for individual store
completions which is highly inefficient. Further, upon
receiving a load acquire synchronization event, the system
performs a full cache flush to invalidate clean and poten-
tially stale data which makes data reuse in the presence of
synchronization impossible.

The WC memory system uses cache hierarchies to
coalesce store events. Executing a StRel synchronization
event in the WC triggers a slow and intensive cache flush to
determine when the prior stores have completed to a next
level of hierarchy. A cache flush entails walking through an
entire cache hierarchy to track outstanding store events to
completion.

A hierarchical directory/snooping cache coherence proto-
col solution is a “read for ownership” solution that could
support an RCsc memory consistency model, however, the
memory access requests to write data encounter long delays.

10

25

40

45

2

A requesting processor (e.g., a CPU or GPU) has to read or
own a memory block before writing to local cache and
completing a store event.

BRIEF SUMMARY OF EMBODIMENTS

What is needed therefore, are embodiments that enforce
an RCsc memory model and can execute release synchro-
nization instructions such as a StRel event without tracking
an outstanding store event through a memory hierarchy,
while efficiently using bandwidth resources. In embodi-
ments, a requesting processor does not have to read or own
a memory block before writing in local cache and complet-
ing a store event. Embodiments improve the performance of
both global synchronization events (e.g., writing to main
memory for completion) and local synchronization events
(e.g., writing to a common ordering point such as level 2
cache for completion) since the cache hierarchy does not
need to be flushed and a store event may not need to reach
main memory to complete. Embodiments decouple a store
event from an ordering of the store event with respect to a
RCsc memory model.

Embodiments include a method, computer program prod-
uct, and a system. For example, the system includes a set of
hierarchical read/write combining buffers that coalesce
stores from different parts of the system. In addition, a
component maintains a partial order of received store events
and release synchronization events to avoid content address-
able memory (CAM) structures, full cache flushes, and
direct write-throughs to memory. Embodiments provide
RCsc memory model programmability while efficiently
using limited bandwidth.

Certain embodiments include a method, computer pro-
gram product, and a system. For example, when a store
memory event is received, a method embodiment includes
writing data to a level n cache, where n is an integer
representing the level of cache hierarchy, and writing a store
entry that includes an address of the data in the level n cache
to a level n pool, where the level n pool maintains a partial
order among the store entry, a prior received store entry, and
a release marker entry. When a release marker is present, the
method further includes ordering the store entry in the level
n pool to be after a most-recent release marker. The level n
cache and corresponding level n pool are closer to a pro-
cessor (e.g., core) than a level (n+1) cache and a correspond-
ing level (n+1) pool. For example, when n is 1, the level 1
cache and corresponding level 1 pool are closer to the
processor than the level 2 cache and the corresponding level
2 pool.

Certain embodiments include a computer-readable stor-
age device that includes stored instructions which are
executed by a processing unit. In response to receiving a
store memory event, instructions are executed that cause the
processing unit to perform operations. The operations
include writing data to a level n cache, where n is an integer
representing the level of cache hierarchy, and writing a store
entry that includes an address of the data in the level n cache
to a level n pool, where the level n pool maintains a partial
order among the store entry, a prior received store entry, and
a release marker entry. When a release marker is present,
further operations include ordering the store entry in the
level n pool to be after a most-recent release marker.

A further embodiment includes a processing unit includ-
ing one or more compute units configured to respond to a
store memory event. The processing unit writes data to a
level n cache, where n is an integer representing the level of

US 9,477,599 B2

3

cache hierarchy. The processing unit also writes a store entry
that includes an address of the data in the level n cache to a
level n pool, where the level n pool maintains a partial order
among the store entry, a prior received store entry, and a
release marker entry. When a release marker is present the
processing unit orders the store entry in the level n pool to
be after a most-recent release marker.

Further features and advantages of the embodiments, as
well as the structure and operation of various embodiments,
are described in detail below with reference to the accom-
panying drawings. It is noted that the embodiments are not
limited to the specific embodiments described herein. Such
embodiments are presented herein for illustrative purposes
only. Additional embodiments will be apparent to persons
skilled in the relevant art(s) based on the teachings contained
herein.

BRIEF DESCRIPTION OF THE
DRAWINGS/FIGURES

The accompanying drawings, which are incorporated
herein and form part of the specification, illustrate the
embodiments and, together with the description, further
serve to explain the principles of the embodiments and to
enable a person skilled in the pertinent art to make and use
the embodiments. Various embodiments are described below
with reference to the drawings, wherein like reference
numerals are used to refer to like elements throughout.

FIG. 1 illustrates an APU environment, according to an
embodiment.

FIG. 2 illustrates a write-back write-combine system,
according to an embodiment.

FIG. 3 illustrates a GPU, according to an embodiment.

FIG. 4 illustrates a method of handling the receipt of
memory events, according to an embodiment.

FIG. 5 illustrates a method of evicting entries, according
to an embodiment.

FIG. 6 illustrates a method of handing memory synchro-
nization events, according to an embodiment.

FIG. 7 illustrates a method of evicting entries from a
queue, according to an embodiment.

FIG. 8 illustrates an example computer system in which
embodiments may be implemented.

The embodiments will be described with reference to the
accompanying drawings. Generally, the drawing in which an
element first appears is typically indicated by the leftmost
digit(s) in the corresponding reference number.

DETAILED DESCRIPTION OF EMBODIMENTS

In the detailed description that follows, references to “one
embodiment,” “an embodiment,” “an example embodi-
ment,” etc., indicate that the embodiment described may
include a particular feature, structure, or characteristic, but
every embodiment may not necessarily include the particu-
lar feature, structure, or characteristic. Moreover, such
phrases are not necessarily referring to the same embodi-
ment. Further, when a particular feature, structure, or char-
acteristic is described in connection with an embodiment, it
is submitted that it is within the knowledge of one skilled in
the art to affect such feature, structure, or characteristic in
connection with other embodiments whether or not explic-
itly described.

The term “embodiments” does not require that all
embodiments include the discussed feature, advantage or
mode of operation. Alternate embodiments may be devised
without departing from the scope of the disclosure, and

2

10

15

20

25

30

35

40

45

50

55

60

65

4

well-known elements of the disclosure may not be described
in detail or may be omitted so as not to obscure the relevant
details. In addition, the terminology used herein is for the
purpose of describing particular embodiments only and is
not intended to be limiting of the disclosure. For example, as
used herein, the singular forms “a,” “an” and “the” are
intended to include the plural forms as well, unless the
context clearly indicates otherwise. It will be further under-
stood that the terms “comprises,” “comprising,” “includes”
and/or “including,” when used herein, specify the presence
of stated features, integers, steps, operations, elements,
and/or components, but do not preclude the presence or
addition of one or more other features, integers, steps,
operations, elements, components, and/or groups thereof.

Computing devices process data and provide many appli-
cations to users. Example computing devices include, but
are not limited to, mobile phones, personal computers,
workstations, and game consoles. Computing devices use a
central processing unit (“CPU”) to process data. ACPU is a
processor which carries out instructions of computer pro-
grams or applications. For example, a CPU carries out
instructions by performing arithmetical, logical and input/
output operations. In an embodiment, a CPU performs
control instructions that include decision making code of a
computer program or an application, and delegates process-
ing to other processors in the electronic device, such as a
graphics processing unit (“GPU”).

A GPU is a processor that is a specialized electronic
circuit designed to rapidly process mathematically intensive
applications on electronic devices. The GPU has a highly
parallel structure that is efficient for parallel processing of
large blocks of data, such as mathematically intensive data
common to computer graphics applications, images and
videos. The GPU may receive data for processing from a
CPU or generate data for processing from previously pro-
cessed data and operations. In an embodiment, the GPU is
a hardware-based processor that uses hardware to process
data in parallel.

Due to advances in technology, a GPU also performs
general purpose computing (also referred to as GPGPU
computing). In the GPGPU computing, a GPU performs
computations that traditionally were handled by a CPU. An
accelerated processing unit (APU) includes at least the
functions of a CPU and a GPU. The GPU can be a GPGPU.

In an embodiment, a GPU includes one or more compute
units (CUs) that process data. A compute unit (CU) includes
arithmetic logic units (ALUs) and other resources that
process data on the GPU. Data can be processed in parallel
within and across compute units.

In an embodiment, a control processor on a GPU sched-
ules task processing on compute units. Tasks include com-
putation instructions. Those computation instructions may
access data stored in the memory system of a computing
device and manipulate the accessed data. In an embodiment,
the data may be stored in volatile or non-volatile memory.
An example of volatile memory includes random access
memory (RAM). Examples of RAM include dynamic ran-
dom access memory (DRAM) and static random access
memory (SRAM). Volatile memory typically stores data as
long as the electronic device receives power. Examples of
non-volatile memory include read-only memory (ROM),
flash memory, ferroelectric RAM (F-RAM), hard disks,
floppy disks, magnetic tape, optical discs, etc. Non-volatile
memory retains its memory state when the electronic device
loses power or is turned off.

US 9,477,599 B2

5

FIG. 1 illustrates an APU environment, according to an
embodiment. In the example shown, system 100 is an APU
environment that includes CPU 110, GPU 130, main
memory 150, and bus 140.

Bus 140 may be any type of communication infrastructure
used in computer systems, including a peripheral component
interface (PCI) bus, a memory bus, a PCI Express (PCIE)
bus, front-side bus (FSB), hypertransport (HT), or another
type of communication structure or communications chan-
nel whether presently available or developed in the future.

FIG. 2 illustrates a write-combining (WC) system,
according to an environment. WC system 200 includes a
conventional GPU and bus 140. WC system 200 includes
CUs 210a and 21056, and a multi-tiered write-combining
cache including Level 1 (I.1) caches 220a and 2205, as well
as Level 2 (L2) cache 240. 1.2 cache 240 is shared among
CUs 210 in system 200. Bus 230 is substantially the same as
bus 140 of FIG. 1.

In WC system 200, write-combining caches provide
coherence for data-race-free programs (e.g., programs free
of memory accesses conflicts) by writing updates to an
ordering point (e.g., L2 cache 240 or main memory 150) at
synchronization events. In addition, write-combining caches
use a write-back policy that keeps previously written data in
cache longer than the WT alternative. This policy increases
the chance that the results of two store events coalesce in
cache before consuming the limited bandwidth at a synchro-
nization event to evict the data to a next-level cache in the
memory hierarchy. However, the cost of a synchronization
event in WC system 200 is high. Upon execution of a StRel
synchronization event, for example, WC system 200 must
perform a full cache flush to find and flush outstanding
writes throughout the cache hierarchy to completion to
ensure proper ordering of memory events. A write is data
written by a store event. WC system 200 searches L1 caches
220a and 2205 as well as L2 cache 240 to find data
previously written, also called dirty data. Once dirty data is
found, WC system 200 evicts the dirty data to a next level
of cache hierarchy, or main memory 150 if a next-level
cache is not present, and waits for acknowledgements to be
received before processing another memory event. The
cache flush process is a very slow and tedious process to be
avoided.

Embodiments utilize read-write combining caches to
enforce a RCsc model, and avoid tracking outstanding store
events via the memory hierarchy. Embodiments utilize extra
knowledge to manage a partial order of outstanding writes
and release synchronization events separately from the out-
standing writes that move through a memory hierarchy.
Because store events are not tracked via the memory hier-
archy, acknowledgement messages are not needed for store
event completions resulting in reduced traffic. In addition,
embodiments allow a store event to complete without having
to write-through to main memory 150.

A memory fence is an operation used to delay a memory
access until the previous memory access has been per-
formed. Synchronization events utilize memory fences to
provide order by making results visible (i.e., available for
reading) in a globally shared memory so that other instruc-
tions in the computing device may utilize the results.

The RCsc consistency model requires that prior store
events that occur before a StRel synchronization event be
visible (i.e., readable) in a specified scope (e.g., global or
local) and that loads after a LdAcq appear to be executed
after the LdAcq. Also, the LdAcgs and StRels themselves
obey sequential consistency so a StRel needs to complete the
writes before a LdAcq may proceed to read the writes.

10

15

20

25

30

35

40

45

50

55

60

65

6

A scope is a group of threads that access a shared memory
or a common ordering point. Global scope requires global
synchronization and a store event is complete when the data
written in main memory 150 is visible to other threads in the
system. Local scope requires local synchronization and a
store event is complete when the data is written to a common
ordering point such as a level 2 cache, and is visible to
threads that share access to that common ordering point. The
ability to synchronize to a local scope when possible, instead
of having to synchronize to a global scope provides consid-
erable savings with regards to limited bandwidth access to
main memory, reduced latency, and power savings.

FIG. 3 illustrates a GPU, according to an embodiment.
System 300 includes a memory hierarchy of read-write
combining buffers [.1 cache 320qa, L1 cache 3204, and 1.2
cache 340, corresponding co-located pool components [.1
pool 350a, L1 pool 3506 and L2 pool 360, as well as
compute units CU 310a and CU 3105.

Pool components contain knowledge to track outstanding
store events separately from the ordering of store events in
the memory hierarchy that occurs when enforcing an RCsc
memory model. Pool components [.1 pool 350a, [.1 pool
3505, and 1.2 pool 360 contain knowledge that enables
system 300 to track which prior writes and corresponding
addresses that may not yet be written back to main memory
150, without having to perform a cache walk, or implement-
ing power-hungry CAM lookups to track acknowledge-
ments.

Pool components .1 pool 350a, L1 pool 3505, and [.2
pool 360 may be implemented for example, by a synchro-
nization First In First Out (S-FIFO) or a Bloom-filter with
signatures as are well known in the art. A pool component
may contain entries associated with a store event or a release
synchronization event. An entry associated with a store
event may include but is not limited to an address in main
memory and a thread identity of a store event. A thread
identity is used to recognize different threads. An entry
associated with a release synchronization event is a release
marker that may include but is not limited to a thread
identity of a release synchronization event.

FIG. 4 illustrates a method of handling the receipt of
memory events, according to an embodiment. In one
example, system 100 and system 300 may be used to
demonstrate method 400. It is to be appreciated that opera-
tions in method 400 may be performed in a different order
than shown, and method 400 may not include all operations
shown. For ease of discussion, and without limitation,
method 400 will be described in terms of elements shown in
FIG. 1 and FIG. 3.

Method 400 begins at step 410 and proceeds to step 415.

At step 415, memory events such as a store, a load, or a
release synchronization are received from a compute unit
such as CU 310a. The memory events are read from a
software program e.g., instruction code, in program order.

When a load event is received, at step 420, method 400
looks for the address of the data in [.1 cache 320a. At step
425, if the data is found in L1 cache 320q¢ (a hit), the data
is read and method 400 returns to step 415 to await another
memory event. If the data is not found (a miss), method 400
proceeds to step 427. If .2 cache 340 is not present, method
400 proceeds to step 430.

At step 425, if the data is partially found (a partial hit), the
dirty data in L1 cache 320q is written to [.2 cache 340.
Method 400 proceeds to step 427.

At step 427, method 400 looks for the data, or the
remaining data in the case of a partial hit, in L2 cache 340;
if the data or the remaining data is found (a hit), the data is

US 9,477,599 B2

7

read and method 400 returns to step 415. Thus, the load can
be completed at level 2 rather than at main memory 150.

At step 427, if the data is not found in L2 cache 340 (a
miss), or if L2 cache 340 is not present, method 400
proceeds to step 430.

At step 427, if the data is partially found and read from 1.2
cache 340 (a partial hit), the dirty data in L2 cache 340 is
written to main memory 150. Data at L1 cache 320 and L1
3206 with that address are invalidated, and method 400
proceeds to stop 430.

At step 430, the data is read from main memory 150.
Method 400 proceeds to step 415.

When a store event is received at step 415, method 400
proceeds to step 435.

At step 435, method 400 writes the data affiliated with an
address to .1 cache 320q and the data is called dirty data as
it is not the same as the memory location at the same address
in main memory 150.

At step 440, a store entry is written to L1 pool 350a that
can include but is not limited to the address location in main
memory 150 to which the data is to be written, and a thread
identity. A thread is a work item involved with the current
instruction execution that includes the store event. The L1
pool 3504 maintains a partial order among the store entry,
any prior received store entries that may exist, and any
release marker entries.

In an example, two groups of prior store entries may exist
in L1 pool 350a that are separated by a release marker
described below. While no particular order within a group of
prior store entries exists, the first group of prior store entries
is ordered to be evicted before the release marker, and the
second group is ordered to be evicted after the release
marker. Thus there is partial order in the pool.

The store entry is written in [.1 pool 3504 to be after the
most-recent release marker. In the example, the store entry
would be added to the second group of existing prior store
entries in no particular order.

Method 400 proceeds to step 415.

When a release synchronization event such as a release, a
StRel, a fence, a kernel end, or a barrier operation is received
at step 415, method 400 proceeds to step 445. A release
marker is written to L1 pool 350a and ordered to be after any
prior write entries in L1 pool 3504a. The entry of the release
marker in L1 pool 350a triggers eviction of any prior write
entries from the L.1 pool 3504. Thus, the release marker will
be evicted after the prior entries in L1 pool 350a to ensure
proper visibility of prior writes.

At step 450, if the release synchronization event is a
StRel, method 400 proceeds to step 455. At step 455, method
400 writes data associated with the store event portion of the
StRel to L1 cache 320a. At step 460, a corresponding store
entry associated with the store event portion of the StRel is
made to L1 pool 350a¢ and ordered to be after the most-
recent release marker. The store entry includes an address
location in main memory 150 to which the data is to be
written, and a thread identity, for example. The method
proceeds to step 415.

At step 450, if the release synchronization event is not a
StRel, method 400 proceeds to step 415.

FIG. 5 illustrates a method of evicting entries, according
to an embodiment. In one example, system 100 and system
300 may be used to demonstrate method 500. It is to be
appreciated that operations in method 500 may be performed
in a different order than shown, and method 500 may not
include all operations shown. For ease of discussion, and
without limitation, method 500 will be described in terms of
elements shown in FIG. 1 and FIG. 3.

10

20

25

40

45

8

Method 500 depicts the flow of operations when evictions
from a pool occur. Evictions can occur, for example, when
the number of entries in a pool exceeds a settable maximum
value, or when a release marker is added to the pool and
triggers prior write evictions. Method 500 includes opera-
tions at the L1 pool 3504 and 1.2 pool 360, for example.

Method 500 begins at step 510 and proceeds to step 515.

At step 515, method 500 proceeds to step 520 to depict L1
pool 350a eviction operations.

At step 520, method 500 determines whether L1 pool
350q evicts a store entry or a release marker entry.

If a release marker is present in [.1 pool 350a and no prior
writes exist ahead of the release marker entry, method 500
determines to evict a release marker entry and proceeds to
step 525.

At step 525, the release marker is evicted from L1 pool
350a to L2 pool 360. The release marker is ordered to be
after any prior store entries in L.2 pool 360. The addition of
the release marker triggers evictions of any prior store
entries from L2 pool 360, before the eviction of the release
marker from L2 pool 360. When a [.2 cache 340 is not
present, the release marker is evicted from L1 pool 350a,
and an acknowledgement is sent to the originating thread
that the release is complete.

Method 500 proceeds to step 545.

At step 520, if a release marker is present in L.1 pool 3504,
the prior store entries in L1 pool 350a ahead of the release
marker are determined to be evicted to a L2 pool 360, and
corresponding data in [.1 cache 320q are correspondingly
evicted to L2 cache 340. The prior store entries can be
evicted in any order with respect to prior store entries. But,
prior store entries and corresponding data in .1 cache 320a
are evicted before the oldest release marker is evicted. Thus,
the written data is guaranteed to be at the next level of the
hierarchy by the time the release marker is evicted.

At step 520, if L1 pool 350a is determined to evict a store
entry, method 500 proceeds to step 530.

At step 530, method 500 determines if the corresponding
data exists in the read-write L1 cache 320q. If the corre-
sponding data does not exist, method 500 proceeds to step
535. At step 535, a cache replacement policy as is well
known in the art, may be enforced and previously evicted the
data from L1 cache 320q; the store entry in L1 pool 350« is
evicted to L2 pool 360. In addition, a special case of a load
event with a partial hit may also cause an early data eviction.
Thus, embodiments support early evictions from the
memory hierarchy. Method 500 proceeds to step 545.

At step 530, if the corresponding data does exist in the [.1
cache 320q, method 500 proceeds to step 540.

At step 540, the store entry in L1 pool 3504 is evicted to
L2 pool 360. In addition, the corresponding data in .1 cache
320q is evicted to L2 cache 340.

When a L2 cache level is not present (not shown),
embodiments include the following: evicting the prior store
entry from the L1 pool 350qa; evicting data, when present,
from the .1 cache 320a associated with the evicted prior
store entry to main memory; when the evicted prior store
entry is associated with a StRel release synchronization
event, signaling completion of release to the originating
thread.

When a [.2 cache level is present and the .2 cache level
is an ordering point (not shown), embodiments further
include the following: evicting the prior store entry from L1
pool 350a; evicting data, when present, from the [.1 cache
320a associated with the evicted prior store entry to the
ordering point; when the evicted prior store entry is asso-
ciated with a StRel release synchronization event, signaling

US 9,477,599 B2

9

completion of release to the originating thread. Thus, a StRel
can complete at an ordering point other than main memory,
and local synchronization is possible (e.g., receipt of a
LdAcq can complete at [.2 cache 340 without having to
access main memory 150). Note that main memory can also
be an ordering point and would be a global ordering point.

Method 500 proceeds to step 545.

At step 515, method 500 proceeds to step 545 to depict .2
pool 360 eviction operations.

At step 545, method 500 determines whether .2 pool 360
evicts a store entry or a release marker entry. Evictions may
occur when a release marker entry is added to L2 pool 360
that triggers evictions, or when the number of L2 pool 360
entries exceeds a configurable threshold, for example. If [.2
pool 360 evicts a release marker entry, method 500 proceeds
to step 550.

At step 550, the release marker is evicted from 1.2 pool
360. In addition, method 500 transmits an acknowledgment
to the originating thread or original requester, CU 310q, that
the release event is complete. This provides assurance that
safe forward progress is possible beyond the release syn-
chronization event.

Note that for a StRel release synchronization event, CU
310a does not need to wait for the acknowledgement, but
rather CU 310a can continue processing other memory
events until executing the next .dAcq. But, for barrier and
fence release synchronization events, CU 310qa waits until a
corresponding acknowledgement is received. Further, addi-
tional embodiments enable unsynchronized stores, if
allowed by the memory model. These unsynchronized stores
would not generate a store entry in [.1 Pool 350a, rather,
corresponding data could be written to L1 cache 320qa. Thus,
unsynchronized stores would not load pool components with
unnecessary operations.

The method proceeds to step 565.

At step 545, if 1.2 pool 360 evicts a store entry, method
500 proceeds to step 555.

At step 555, method 500 determines if the corresponding
data exists in the read-write L2 cache 340. If the correspond-
ing data does not exist, (e.g., due to a cache replacement
policy enforcement) the store entry is evicted from L2 pool
360 and method 500 proceeds to step 565.

At step 555, if the corresponding data does exist, method
500 proceeds to step 560.

At step 560, the store entry is evicted from [.2 pool 360.
In addition, the corresponding data in 1.2 cache 340 is
evicted to main memory 150. Further, if the data was from
a store event portion of a StRel, method 500 signals comple-
tion of release to the originating thread.

Embodiments invalidate all data in L1 caches 320a and
3206 associated with the corresponding address. The invali-
dations may be completed by broadcasting invalidation
messages to all L1 read-write combining caches, [.1 cache
320q and 32054, to ensure release consistency. The invalida-
tions are not critical to performance as the invalidations only
delay release synchronization completions and are bound
based on the number of entries in [.2 pool 360 when a release
synchronization event occurs. Note that write evictions and
load requests do not stall waiting for invalidations. In
addition, the data in L1 320q and L1 3205 can be invalidated
with a flash clear, e.g., when a LdAcq is received, all blocks
in the cache are invalidated. The flash clear does not need to
be associated with the corresponding address.

Method 500 proceeds to step 565.

Logically, L1 pool 350a, L1 pool 32056, and L2 pool 360
may be implemented per thread identity or group of threads
(e.g., wavetront identity).

20

25

35

40

45

10

FIG. 6 illustrates a method of handing memory synchro-
nization events, according to an embodiment. In one
example, system 100 and system 300 may be used to
demonstrate method 600. It is to be appreciated that opera-
tions in method 600 may be performed in a different order
than shown, and method 600 may not include all operations
shown. For ease of discussion, and without limitation,
method 600 will be described in terms of elements shown in
FIG. 1 and FIG. 3.

The top portion of FIG. 6 includes an execution order of
two threads, one from compute unit CU 310a and another
from CU 3105, communicating a value in a simple system
that contains one level of read-write combining cache
including .1 cache 320a and L1 cache 32054. The lower
portion of FIG. 6 illustrates method 600.

Method 600 begins at step 601 when CU 310a issues a
store event, ST X (1), and writes data, 1, to a cache block in
a cache line of L1 cache 320a, associated with address X in
main memory 150. In addition, a store entry is added to L1
pool 3504 that can include but is not limited to the address,
X, associated with the data and a thread identity. If prior
store entries are present, the new store entry is added to the
group of prior store entries and no particular order is
maintained. However, if a release marker is present, the new
store entry would be ordered to be after the most-recent
release marker. If prior store entries are present after the
most-recent release marker, the new store entry would join
that group and no particular order is maintained among the
prior store entries.

At step 602, CU 310q issues a StRel synchronization
event that triggers pool evictions through the memory hier-
archy to main memory 150. A release marker (Rel) entry is
added to L1 pool 350qa, and is ordered to be after any prior
store entries in L1 pool 350q, to be evicted after the prior
write entries in [.1 pool 350a are evicted.

At step 603, L1 pool 350a begins evicting prior write
entries ordered before the release marker (Rel). The entry
associated with address X is evicted from L.1 pool 350a, and
the corresponding data in the cache in L1 cache 320qa
associated with address X is evicted to main memory 150.

At step 604, the prior write entries have been evicted from
L1 pool 350a, the release marker (Rel) is evicted from L1
pool 350a and an acknowledgement is sent to CU 310a to
signal that the release event portion of the StRel is complete.

At step 605, CU 310q issues the store event portion of the
StRel synchronization event and writes data, 2, to a cache in
L1 cache 320a associated with address A. In addition, a L1
pool 350a store entry is added that may include but is not
limited to the address, A, associated with the cached data,
and a thread identity. In an embodiment, an entry of the store
event portion of a StRel to L1 pool 350a will trigger L1 pool
350a evictions.

At step 606, the prior write associated with address A is
eventually evicted from .1 pool 350a (e.g., if the number of
pool entries exceed a settable maximum value (not shown)
or another release synchronization event occurs (not
shown)). When the entry associated with address A is
evicted from L1 pool 3504, the data associated with address
A in L1 cache 320aq is evicted to main memory 150 and
signals completion of the release event portion of the StRel
synchronization event to other threads in the system. The
data at address A in main memory 150 is now visible to all
threads in the system.

At step 607, CU 3105 issues a load acquire [L.dAcq
synchronization event to complete the synchronization.
Method 600 searches L1 cache 3205, to read the data at
address A, and when the address A is not found (a miss),

US 9,477,599 B2

11

method 600 searches main memory 150. When the address
A and corresponding data, 2, are found and read from main
memory 150 (a hit), the data is copied (i.e., loaded) to L1
cache 3205 and is transmitted to (i.e., read by) CU 3105.

At step 608, CU 31054 issues a load event and searches 1.1
cache 3205, to read the data at address X, and when the
address X is not found (a miss), method 600 searches main
memory 150. When the address X and corresponding data,
1, are found and read from main memory 150 (a hit), the data
is copied to L1 cache 32056 and is read by CU 3105.

In an embodiment, a pool can be implemented with a
synchronization First In First Out (S-FIFO) that maintains
complete order for prior writes as well as a release synchro-
nization event. For example, at step 601, when a store event
occurs, an entry would be made to the tail of an S-FIFO that
can include but is not limited to the address, X, associated
with the data and a thread identity. If prior writes are present,
the new L1 pool 3504 store entry would be added to the tail
of the queue and complete order is maintained among the
prior writes as well as the release synchronization events.

When the S-FIFO is filled, method 600 would begin to
dequeue the S-FIFO. This is similar to a pool component
exceeding a settable maximum value. The entry at the top of
the S-FIFO and the corresponding cache in the L1 cache
320a would be evicted to the corresponding next-level
S-FIFO and next-level cache, e.g. 1.2 cache 340 if present.
If the next-level cache is not present, the entry at the top of
the S-FIFO is removed (e.g., popped) and the corresponding
cache in L1 cache 320q is written to main memory 150.

Logically there can be a S-FIFO per thread, but physically
the S-FIFO can be implemented as a single FIFO, or as many
FIFOs that are partitioned based on thread identity or a
group of thread identities. Thus the physical implementation
can balance space versus performance concerns.

FIG. 7 illustrates a method of evicting entries, according
to an embodiment. In one example, system 100 and system
300 may be used to demonstrate method 700. It is to be
appreciated that operations in method 700 may be performed
in a different order than shown, and method 700 may not
include all operations shown. For ease of discussion, and
without limitation, method 700 will be described in terms of
elements shown in FIG. 1 and FIG. 3.

Method 700 depicts the flow of operations when evictions
from a queue such as a First In First Out (FIFO) instead of
a pool occur. Evictions can occur, for example, when the
number of entries in the FIFO exceeds the size of the FIFO
and the entry at the head of the FIFO is popped off the FIFO,
or when a release marker is added to the tail of the FIFO and
triggers prior write evictions. Method 700 includes opera-
tions at a L1 FIFO and L2 FIFO (not shown), for example.

Method 700 begins at step 710 and proceeds to step 715.

At step 715, method 700 proceeds to step 720 to depict L1
FIFO eviction operations.

At step 720, method 700 determines whether L1 FIFO
evicts a store entry or a release marker entry.

When a release marker is present in [.1 FIFO and no prior
writes exist ahead of the release marker entry, method 700
evicts a release marker entry and proceeds to step 725.

At step 725, the release marker is evicted from the head
of L1 FIFO to the tail of L2 FIFO. The addition of the release
marker triggers evictions of any prior store entries from 1.2
FIFO until the release marker itself is evicted from the head
of L2 FIFO. When a L2 cache 340 (and hence [.2 FIFO) is
not present, the release marker is evicted from L.1 FIFO, and
an acknowledgement is sent to the originating thread that the
release is complete.

10

20

35

40

45

55

12

Method 700 proceeds to step 745.

At step 720, if a release marker is present in .1 FIFO, the
prior store entries in [.1 FIFO ahead of the release marker
are evicted in turn, to a L2 FIFO, and corresponding data in
L1 cache 320q are correspondingly evicted to L.2 cache 340.
The prior store entries are evicted in the order of placement
in L1 FIFO. Thus, the written data is guaranteed to be at the
next level of the hierarchy by the time the release marker is
evicted.

At step 720, if L1 FIFO evicts a store entry, method 700
proceeds to step 730.

At step 730, method 700 determines if the corresponding
data exists in the read-write L1 cache 320a. When the
corresponding data does not exist, method 700 proceeds to
step 735. At step 735, a cache replacement policy as is well
known in the art, may be enforced and previously evicted the
data from L1 cache 320a; the store entry at the head of L.1
FIFO is evicted to the tail of L2 FIFO. Thus, embodiments
support early evictions from the memory hierarchy.

Method 700 proceeds to step 745.

At step 730, if the corresponding data does exist in the [.1
cache 320q, method 700 proceeds to step 740.

At step 740, the store entry at the head of L1 FIFO is
evicted to the tail of L.2 FIFO. In addition, the corresponding
data in L1 cache 3204 is evicted to L2 cache 340.

When a L2 cache level is not present (not shown),
embodiments include the following: evicting the prior store
entry from the head of .1 FIFO; evicting data, when present,
from the .1 cache 320a associated with the evicted prior
store entry to main memory; when the evicted prior store
entry is associated with a StRel release synchronization
event, signaling completion of release to the originating.

When a [.2 cache level is present and the .2 cache level
is an ordering point (not shown), embodiments further
include the following: evicting the prior store entry from L1
FIFO; evicting data, when present, from the [.1 cache 320a
associated with the evicted prior store entry to the ordering
point; when the evicted prior store entry is associated with
a StRel release synchronization event, signaling completion
of release to the originating thread. Thus, a StRel can
complete at an ordering point other than main memory, and
local synchronization is possible (e.g., receipt of a LdAcq
can complete at .2 cache 340 without having to access main
memory 150). Note that main memory can also be an
ordering point and would be a global ordering point.

Method 700 proceeds to step 745.

At step 715, method 700 proceeds to step 745 to depict 1.2
FIFO eviction operations.

At step 745, method 700 determines whether [.2 FIFO
evicts a store entry or a release marker entry. Evictions may
occur when a release marker entry is added to the tail of [.2
FIFO that triggers evictions, or when the number of L2 FIFO
entries exceeds a configurable threshold, for example. If [.2
FIFO determines to evict a release marker entry, method 700
proceeds to step 750.

At step 750, the release marker is evicted from [.2 FIFO.
In addition, method 700 transmits an acknowledgment to the
originating thread or original requester, CU 310a, that the
release event is complete. This provides assurance that safe
forward progress is possible beyond the release synchroni-
Zation event.

Note that for a StRel release synchronization event, CU
310a does not need to wait for the acknowledgement, but
rather CU 310a can continue processing other memory
events until executing the next LdAcq. But, for barrier and
fence release synchronization events, CU 310q waits until a
corresponding acknowledgement is received. Further, addi-

US 9,477,599 B2

13

tional embodiments enable unsynchronized stores, if
allowed by the memory model. These unsynchronized stores
would not generate a store entry in L1 FIFO, rather, corre-
sponding data could be written to .1 cache 320a. Thus,
unsynchronized stores would not load pool components with
unnecessary operations.

The method proceeds to step 765.

At step 745, if L2 FIFO determines to evict a store entry,
method 700 proceeds to step 755.

At step 755, method 700 determines if the corresponding
data exists in the read-write L2 cache 340. If the correspond-
ing data does not exist, (e.g., due to a cache replacement
policy enforcement) the store entry is evicted from the head
of L2 FIFO and method 700 proceeds to step 765.

At step 755, when the corresponding data does exist,
method 700 proceeds to step 760.

At step 760, the store entry is evicted from the head of 1.2
FIFO. In addition, the corresponding data in .2 cache 340
is evicted to main memory 150. Further, if the data was from
a store event portion of a StRel, method 700 signals comple-
tion of release to the originating thread.

Embodiments invalidate all data in L1 caches 320a and
3206 associated with the corresponding address. The invali-
dations may be completed by broadcasting invalidation
messages to all L1 read-write combining caches, [.1 cache
320q and 32054, to ensure release consistency. The invalida-
tions are not critical to performance as the invalidations only
delay release synchronization completions and are bound
based on the number of entries in L2 FIFO when a release
synchronization event occurs. Note that write evictions and
load requests do not stall waiting for invalidations. In
addition, the data in L1 320q and L1 3205 can be invalidated
with a flash clear, e.g., when a LdAcq is received, all blocks
in the cache are invalidated. The flash clear does not need to
be associated with the corresponding address.

Method 700 proceeds to step 765.

Logically, .1 FIFO and L.2 FIFO may be implemented per
thread identity or group of threads (e.g., wavefront identity).

In another embodiment, a pool of entries can be imple-
mented with a Bloom-filter with a set of entries. A Bloom
filter is an inexact representation of a set of elements. Bloom
filters are implemented with an array of bits, and that array
is indexed through two or more hash functions. To insert an
element in the bloom filter, the element is hashed and all
corresponding bits are set. To test membership, the element
is hashed and all corresponding bits are checked. If all bits
are set (e.g., to “17), the element may be in the set. If any one
of the bits is cleared (e.g., to “0”), the element is not in the
set. Unlike a mathematical set, Bloom filters have no remove
function (though a variant called a counting bloom filter
does). A signature is a representation of a set of elements. It
can be implemented with a bloom filter, an exact list (and/or
array), or a FIFO, for example.

In summary, a prior store event is guaranteed to be
ordered in the memory hierarchy whenever the store event
has been evicted from a pool, dequeued from a FIFO, or
tested for membership in a set using a Bloom-filter.

Various aspects of the disclosure can be implemented by
software, firmware, hardware, or a combination thereof.
FIG. 8 illustrates an example computer system 800 in which
some embodiments, or portions thereof, can be implemented
as computer-readable code. For example, the methods 400-
700, of FIGS. 4 through 7 can be implemented in system
800. Various embodiments are described in terms of the
example computer system 800. After reading this descrip-
tion, it will become apparent to a person skilled in the

10

15

20

25

40

45

50

55

14

relevant art how to implement the embodiments using other
computer systems and/or computer architectures.

Computer system 800 includes one or more processors,
such as processor 804. Processor 804 can be a special
purpose or a general purpose processor. Examples of pro-
cessor 804 are CPU 110 and GPU 130 of FIG. 1, or a
GPGPU, or APU as described earlier. Processor 804 is
connected to a communication infrastructure 806 (for
example, a bus or network) such as bus 140 of FIG. 1.

Computer system 800 also includes a main memory 808,
such as random access memory (RAM) such as main
memory 150 of FIG. 1, and may also include a secondary
memory 810. Secondary memory 810 may include, for
example, a hard disk drive 812, a removable storage drive
814, and/or a memory stick. Removable storage drive 814
may comprise a floppy disk drive, a magnetic tape drive, an
optical disk drive, a flash memory, or the like. The remov-
able storage drive 814 reads from and/or writes to a remov-
able storage unit 818 in a well-known manner. Removable
storage unit 818 may comprise a floppy disk, magnetic tape,
optical disk, etc. that is read by and written to by removable
storage drive 814. As will be appreciated by persons skilled
in the relevant art(s), removable storage unit 818 includes a
computer usable storage medium having stored therein
computer software and/or data.

In alternative implementations, secondary memory 810
may include other similar means for allowing computer
programs or other instructions to be loaded into computer
system 800. Such means may include, for example, a
removable storage unit 822 and an interface 820. Examples
of such means may include a program cartridge and car-
tridge interface (such as that found in video game devices),
a removable memory chip (such as an EPROM, or PROM)
and associated socket, and other removable storage units
822 and interfaces 820 that allow software and data to be
transferred from the removable storage unit 822 to computer
system 800.

Computer system 800 may also include a communica-
tions interface 824. Communications interface 824 allows
software and data to be transferred between computer sys-
tem 800 and external devices. Communications interface
824 may include a modem, a network interface (such as an
Ethernet card), a communications port, a PCMCIA slot and
card, or the like. Software and data transferred via commu-
nications interface 824 are in the form of signals that may be
electronic, electromagnetic, optical, or other signals capable
of being received by communications interface 824. These
signals are provided to communications interface 824 via a
communications path 826. Communications path 826 carries
signals and may be implemented using wire or cable, fiber
optics, a phone line, a cellular phone link, an RF link or other
communications channels.

In this document, the terms “computer program medium”
and “computer usable medium” are used to generally refer
to media such as removable storage unit 818, removable
storage unit 822, and a hard disk installed in hard disk drive
812. Signals carried over communications path 826 can also
embody the logic described herein. Computer program
medium and computer usable medium can also refer to
memories, such as main memory 808 and secondary
memory 810, which can be memory semiconductors (e.g.
DRAMs, etc.). These computer program products are means
for providing software to computer system 800.

Computer programs (also called computer control logic)
are stored in main memory 808 and/or secondary memory
810. Computer programs may also be received via commu-
nications interface 824. Such computer programs, when

US 9,477,599 B2

15

executed, enable computer system 800 to implement the
embodiments as discussed herein. In particular, the com-
puter programs, when executed, enable processor 804 to
implement the disclosed processes, such as the steps in the
methods 400-700 of FIGS. 4-7 as discussed above. Accord-
ingly, such computer programs represent controllers of the
computer system 800. Where the embodiments are imple-
mented using software, the software may be stored in a
computer program product and loaded into computer system
800 using removable storage drive 814, interface 820, hard
drive 812 or communications interface 827. This can be
accomplished, for example, through the use of general-
programming languages (such as C or C++). The computer
program code can be disposed in any known computer-
readable medium including semiconductor, magnetic disk,
or optical disk (such as, CD-ROM, DVD-ROM). As such,
the code can be transmitted over communication networks
including the Internet and internets. It is understood that the
functions accomplished and/or structure provided by the
systems and techniques described above can be represented
in a core (such as a processing-unit core) that is embodied
in program code and may be transformed to hardware as part
of the production of integrated circuits. This can be accom-
plished, for example, through the use of hardware-descrip-
tion languages (HDL) including Verilog HDL, VHDL,
Altera HDL (AHDL) and so on, or other available program-
ming and/or schematic-capture tools (such as, circuit-cap-
ture tools).

Embodiments are also directed to computer program
products comprising software stored on any computer use-
able medium. Such software, when executed in one or more
data processing device, causes a data processing device(s) to
operate as described herein. Embodiments employ any com-
puter useable or readable medium, known now or in the
future. Examples of computer useable mediums include, but
are not limited to, primary storage devices (e.g., any type of
random access memory), secondary storage devices (e.g.,
hard drives, floppy disks, CD ROMS, ZIP disks, tapes,
magnetic storage devices, optical storage devices, MEMS,
nanotechnological storage device, etc.), and communication
mediums (e.g., wired and wireless communications net-
works, local area networks, wide area networks, intranets,
etc.).

It is to be appreciated that the Detailed Description
section, and not the Summary and Abstract sections, is
intended to be used to interpret the claims. The Summary
and Abstract sections may set forth one or more but not all
exemplary embodiments as contemplated by the inventor(s),
and thus, are not intended to limit the disclosure and the
appended claims in any way.

The disclosure has been described above with the aid of
functional building blocks illustrating the implementation of
specified functions and relationships thereof. The boundar-
ies of these functional building blocks have been arbitrarily
defined herein for the convenience of the description. Alter-
nate boundaries can be defined so long as the specified
functions and relationships thereof are appropriately per-
formed.

The foregoing description of the specific embodiments
will so fully reveal the general nature of the embodiments
that others can, by applying knowledge within the skill of
the art, readily modify and/or adapt for various applications
such specific embodiments, without undue experimentation,
without departing from the general concept of the present
disclosure. Therefore, such adaptations and modifications
are intended to be within the meaning and range of equiva-
lents of the disclosed embodiments, based on the teaching

10

15

20

25

30

35

40

45

50

55

60

65

16

and guidance presented herein. It is to be understood that the
phraseology or terminology herein is for the purpose of
description and not of limitation, such that the terminology
or phraseology of the present specification is to be inter-
preted by the skilled artisan in light of the teachings and
guidance.

The breadth and scope of the present disclosure should
not be limited by any of the above-described exemplary
embodiments, but should be defined only in accordance with
the following claims and their equivalents.

What is claimed is:
1. A method comprising:
responsive to a store memory event:
writing data to a level n cache, where n is an integer
greater than zero representing the level of cache hier-
archy;
writing, to a level n pool, a store entry that includes an
address location in main memory to which the data in
the level n cache is to be written and a thread identity
associated with the store entry, wherein the level n pool
maintains a partial order among the store entry, a prior
received store entry, and a release marker entry;
when a release marker is present, ordering the store entry
in the level n pool to be after a most-recent release
marker; and
when a level (n+1) cache is present: evicting the prior
store entry from the level n pool to the level (n+1) pool,
and evicting data, when present, from the level n cache
associated with the evicted prior store entry, to the level
(n+1) cache.
2. The method of claim 1, further comprising:
when a level (n+1) cache level is not present:
evicting the prior store entry from the level n pool;
evicting data, when present, from the level n cache
associated with the evicted prior store entry to main
memory; and
when the evicted prior store entry is associated with a
StRel release synchronization event, signaling
completion of release to an originating thread; and
when n=2, invalidating the data in the level 1 cache
associated with the evicted prior store entry.
3. The method of claim 2:
wherein when a level (n+1) is present and the level (n+1)
is an ordering point, the method further comprises:
evicting the prior store entry from the level n pool;
evicting data, when present, from the level n cache
associated with the evicted prior store entry to the
ordering point; and
when the evicted prior store entry is associated with a
StRel release synchronization event, signaling
completion of release to all threads that share access
to the ordering point.
4. The method of claim 1:
wherein when the memory event is a release synchroni-
zation event, the method further comprises:
writing a release marker in the level n pool;
ordering the release marker to be after any prior store
entries in the level n pool; and
triggering eviction of the prior store entries, when
present, from the level n pool before the release
marker.
5. The method of claim 4:
wherein when prior store entries in the level n pool before
the release marker are evicted, the method further
comprises:

US 9,477,599 B2

17

when a level (n+1) cache is present:

evicting the release marker from the level n pool to a
level (n+l1) pool, wherein the release marker is
ordered to be after any prior store entries in the level
(n+1) pool;

when prior store entries are present in the level (n+1)
pool before the release marker, triggering eviction of
the prior store entries;

when a level (n+1) cache is not present:

evicting the release marker from the level n pool; and
sending an acknowledgement to an originating thread
that release is complete.

6. The method of claim 4, wherein a release synchroni-
zation event includes at least one of a store-release, a release,
a kernel end, a barrier, and a fence operation.

7. The method of claim 1, wherein the level n pool is a
queue further comprising:

writing a store entry that includes an address of the data

in the level n cache in a tail of the queue that maintains
an order of a received store entry and a release marker.

8. A non-transitory computer-readable storage device hav-
ing stored thereon instructions, execution of which, by a
processing unit, cause the processing unit to perform opera-
tions comprising:

responsive to a store memory event:

writing data to a level n cache, where n is an integer

greater than zero representing the level of cache hier-
archy;
writing, to a level n pool, a store entry that includes an
address location in main memory to which the data in
the level n cache is to be written and a thread identity
associated with the store entry, wherein the level n pool
maintains a partial order among the store entry, a prior
received store entry, and a release marker entry;

when a release marker is present, ordering the store entry
in the level pool to be after a most-recent release
marker; and

when a level (n+1) cache is present:

evicting the prior store entry from the level n pool to the
level (n+1) pool, and

evicting data, when present, from the level n cache
associated with the evicted prior store entry, to the
level (n+1) cache.

9. The non-transitory computer-readable storage device of
claim 8, further comprising:

when a level (n+1) cache level is not present:

evicting the prior store entry from the level n pool;
evicting data, when present, from the level n cache
associated with the evicted prior store entry to main
memory;

when the evicted prior store entry is associated with a
StRel release synchronization event, signaling
completion of release to an originating thread; and

when n=2, invalidating data in the level 1 cache asso-
ciated with the evicted prior store entry.

10. The non-transitory computer-readable storage device
of claim 9:

wherein when a level (n+1) is present and the level (n+1)

is an ordering point, the computer-readable storage

device further comprises:

evicting the prior store entry from the level n pool;

evicting data, when present, from the level n cache
associated with the evicted prior store entry to the
ordering point;

5

10

15

20

25

30

35

40

45

50

55

60

65

18

when the evicted prior store entry is associated with a
StRel release synchronization event, signaling
completion of release to all threads that share access
to the ordering point.

11. The non-transitory computer-readable storage device
of claim 8:
wherein when the memory event is a release synchroni-
zation event, the computer-readable storage device
further comprises:

writing a release marker in the level n pool;
ordering the release marker to be after any prior store
entries in the level n pool; and
triggering eviction of the prior store entries, when
present, from the level n pool before the release
marker.
12. The non-transitory computer-readable storage device
of claim 11:
wherein when prior store entries in the level n pool before
the release marker are evicted, the computer-readable
storage device further comprises:
when a level (n+1) cache is present:
evicting the release marker from the level n pool to a
level (n+l1) pool, wherein the release marker is
ordered to be after any prior store entries in the level
(n+1) pool;
when prior store entries are present in the level (n+1)
pool before the release marker, triggering eviction of
the prior store entries;

when a level (n+1) cache is not present:
evicting the release marker from the level n pool; and

sending an acknowledgement to an originating thread
that release is complete.

13. The non-transitory computer-readable storage device
of claim 11, wherein a release synchronization event
includes at least one of a store-release, a release, a kernel
end, a barrier, and a fence operation.

14. The non-transitory computer-readable storage device
of claim 8, wherein the level n pool is a queue further
comprising:

writing a store entry that includes an address of the data

in the level n cache in a tail of the queue that maintains
an order of a received store entry and a release marker.

15. A processing unit comprising one or more compute
units configured to:

responsive to a store memory event:

write data to a level n cache, where n is an integer greater
than zero representing the level of cache hierarchy;
write, to a level n pool, a store entry that includes an
address location in main memory to which the data in
the level n cache is to be written and a thread identity
associated with the store entry, wherein the level n pool
maintains a partial order among the store entry, a prior
received store entry, and a release marker entry;
when a release marker is present, order the store entry in
the level n pool to be after a most-recent release
marker; and
when a level (n+1) cache is present:
evict the prior store entry from the level n pool to the
level (n+1) pool, and
evict data, when present, from the level n cache asso-
ciated with the evicted prior store entry, to the level
(n+1) cache.

US 9,477,599 B2

19
16. The processing unit of claim 15, further configured to:
when a level (n+1) cache level is not present:
evict the prior store entry from the level n pool;

evict data, when present, from the level n cache asso-
ciated with the evicted prior store entry to main
memory;

when the evicted prior store entry is associated with a
StRel release synchronization event, signal comple-
tion of release to an originating thread; and

when n=2, invalidate the data in the level 1 cache
associated with the evicted prior store entry.

17. The processing unit of claim 16:

wherein when a level (n+1) is present and the level (n+1)

is an ordering point, the processing unit further con-

figured to:

evict the prior store entry from the level n pool;

evict data, when present, from the level n cache asso-
ciated with the evicted prior store entry to the
ordering point;

when the evicted prior store entry is associated with a
StRel release synchronization event, signal comple-
tion of release to all threads that share access to the
ordering point.

10

15

20

20

18. The processing unit of claim 15:
wherein when the memory event is a release synchroni-
zation event, the processing unit further configured to:
write a release marker in the level n pool;
order the release marker to be after any prior store
entries in the level n pool; and
trigger eviction of the prior store entries, when present,
from the level n pool before the release marker.
19. The processing unit of claim 18:
wherein when prior store entries in the level n pool before
the release marker are evicted, the processing unit
further configured to:
when a level (n+1) cache is present:
evict the release marker from the level n pool to a level
(n+1) pool, wherein the release marker is ordered to
be after any prior store entries in the level (n+1) pool;
when prior store entries are present in the level (n+1)
pool before the release marker, trigger eviction of the
prior store entries;
when a level (n+1) cache is not present:
evict the release marker from the level n pool; and
send an acknowledgement to an originating thread that
release is complete.
20. The processing unit of claim 15, wherein the level n
pool is a queue, the processing unit further configured to:
write a store entry that includes an address of the data in
the level n cache in a tail of the queue that maintains an
order of a received store entry and a release marker.

#* #* #* #* #*

